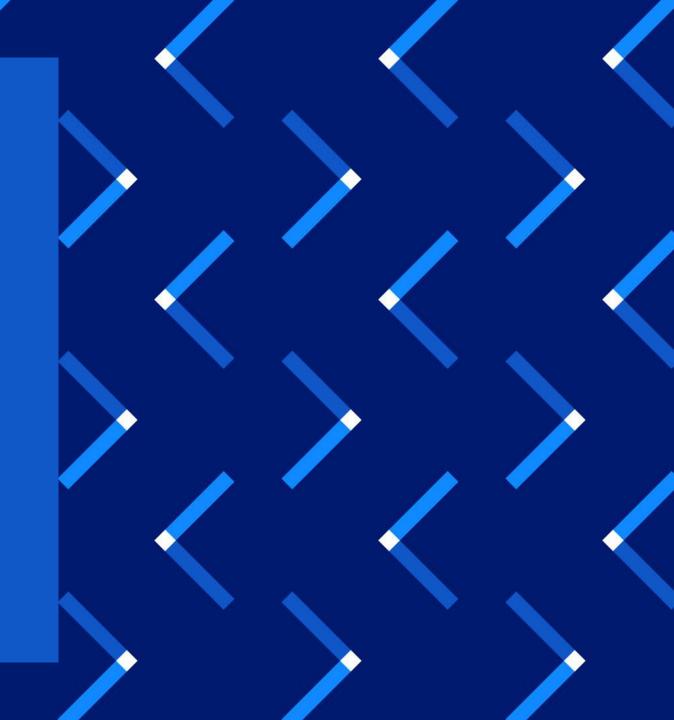
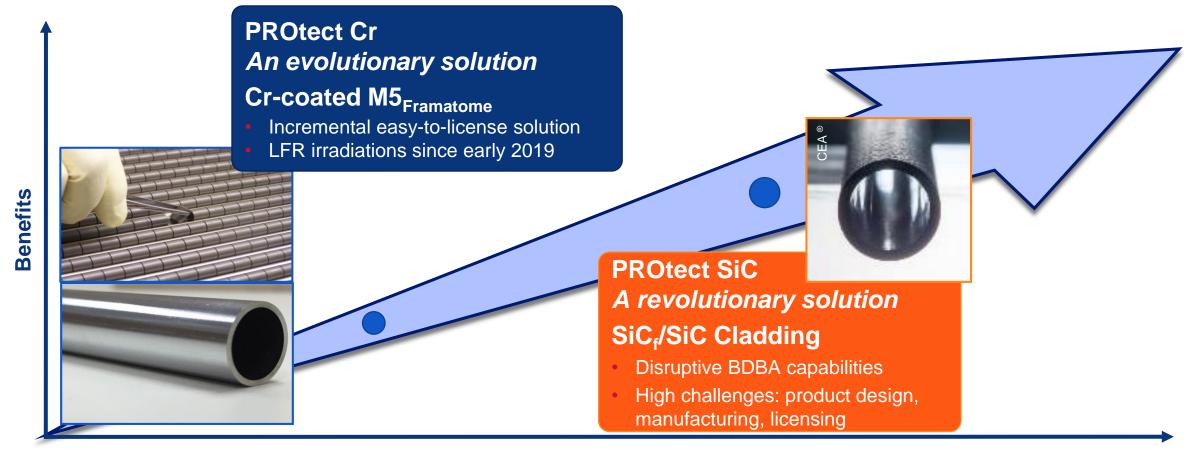
framatome


PROtect Cr: The leading E-ATF solution by Framatome

Karl Buchanan

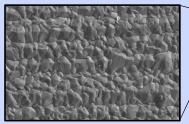
T. Garnier, E. Schweitzer, N. Vioujard

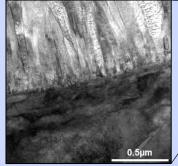

1st International Conference on LWR Fuel Performance, Modelling and Experimental Support

Nessebar, 16 September 2025

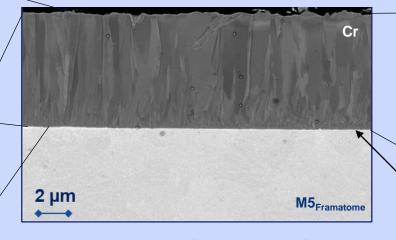
PROtect: Framatome's E-ATF Concepts

Technological challenge

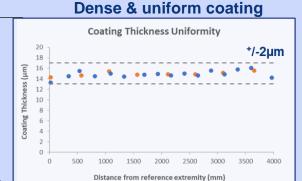

PROtect-Cr: Our Evolutionary E-ATF Solution


Roughness equivalent to uncoated cladding

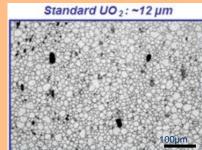
Chromium-


Chromiaenhanced

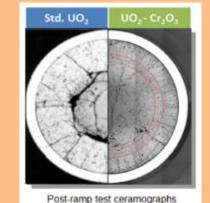
coated cladding



No significant modification of cladding microstructure

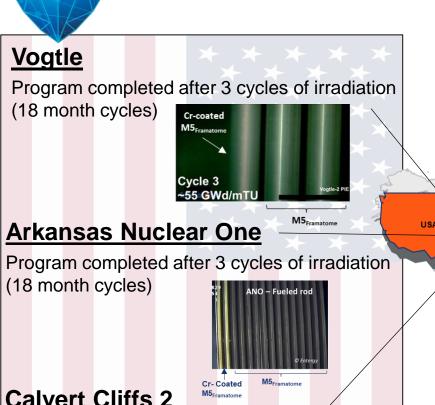


PVD produces a highly protective and adherent coating while retaining key M5_{Framatome} cladding properties


Excellent adherence

Cr₂O₃-doped UO₂: 60 μm

Large grain microstructure for improved fission gas retention


improved PCI performance

Enhanced viscoplasticity for

PROtect-Cr: Worldwide Irradiation Program

Gösgen → highest fluence/burnup reached for Cr-coated cladding

> IMAGO – Six 12-month cycles giving an equivalent burnup of ~90GWD/tU

GOCHROM - Five 12-month cycles giving a burnup of ~73GWD/tU

→ Fuel rods reinserted for 6th cycle!

Calvert Cliffs 2

First fully-coated fuel completed its 2nd 24

month cycle

→ 3rd cycle in progress!

Blayais

First cycle in an EDF reactor completed

→ Second cycle in progress!

Records reached in qualifying Framatome's **PROtect-Cr solution**

PROtect

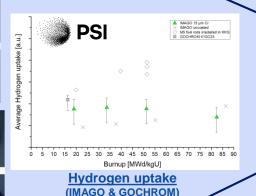
PROtect-Cr: Demonstrated Performance

IMAGO MTR 2 cycles Metallography INTERFACE Coating surface Coating scratch MStreamtone Cr

Burst testing

Excellent performance confirmed by PIE observations

- Post-irradiation examinations ongoing with our global network of collaborators (CEA, PSI, INL, ORNL...)
- Excellent Cr-coating adherence confirmed. Mechanical properties of irradiated Cr-coated M5_{Framatome} similar to irradiated M5_{Framatome} cladding


GOCHROM LTRs (1 cycle)

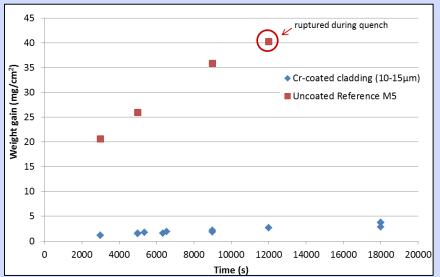
Ring tensile

testing

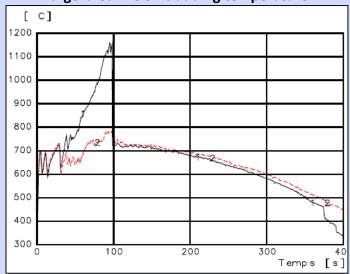
350°C

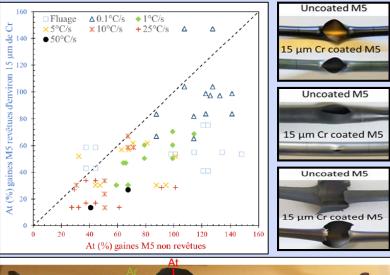
30GWD/tu

Key data setting the platform for US and EU licensing


PROtect-Cr: Resistant at High Temperatures

Added performance in accidental conditions


- Significantly reduced oxidation kinetics and hydrogen pick-up
- Reduced peak cladding temperature
- Reduced cladding strain at burst


Oxidation kinetics at 1100°C

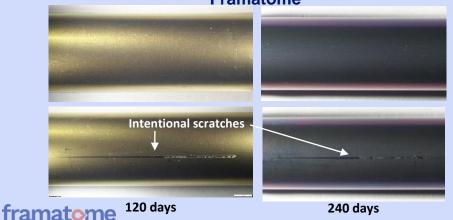
Large-break LOCA cladding temperature

Cladding strain at burst

PROtect-Cr: VVER Materials Qualification

VVER 440 Fuel materials qualification program

 Autoclave exposure and high temperature oxidation of Framatome's fuel materials (including E-ATF) performed at UJP Praha under the <u>Safe</u> an <u>Alternative VVER Europe Fuel (SAVE) project</u>



Cr-coated M5_{Framatome} cladding irradiation in the Temelin NPP

Planned irradiation of Cr-coated M5_{Framatome} cladding sections within the FIDES-II MCA-ATF JEEP irradiation program

Cr-coated M5_{Framatome} – VVER1000 conditions

- Excellent corrosion performance consistent with PWR experience
- ✓ Adherent coating & excellent performance in the presence of preexisting damage

Important collaborations bringing Framatome Fuel to VVER reactors

PROtect

PROtect-Cr: Towards Industrial-Scale Production

2020: Full-length Crcoating begins at Framatome Paimboeuf 2025: Installation of industrial pilot line at Framatome Paimboeuf (100,000 tubes/year)

ATR 2025

2016: Cr-coating of small samples mastered

Lab-scale coater

2018: Cr-coating of full-

length cladding begins

Full-length Prototype (FLP) Machine

Coating PROtect Prototype (CPP) Machines

PROtect Industrial Pilot Facility

2026

readiness

Reload production

PROtect

PROtect-Cr: Towards Industrial-Scale Production

2026 **Reload production** readiness

ATR 2025

Chromiumcoated cladding

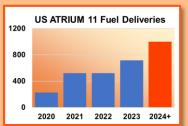
Chromiaenhanced pellets

2016: Cr-coating of small samples mastered

2018: Cr-coating of fulllength cladding begins

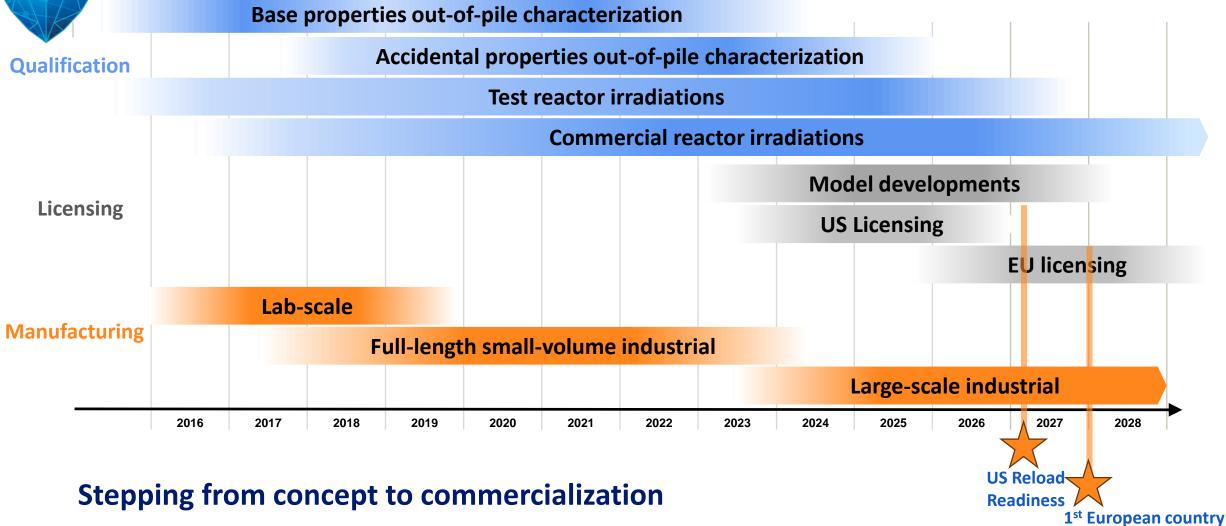
2020: Full-length Crcoating begins at Framatome Paimboeuf

2021


Blayais 2023

2025: Installation of industrial pilot line at Framatome Paimboeuf (100,000 tubes/year)

PWR reloads commercialized since 2018

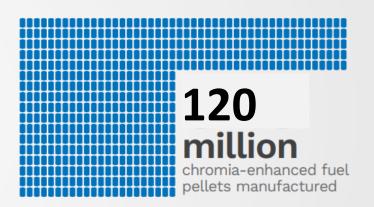


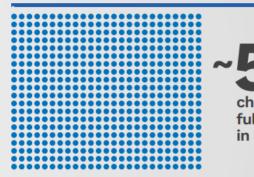
BWR ATRIUM 11 reloads use Cr-enhanced pellets for PCI-resistance benefits

Commercialized & available at reload scale

PROtect-Cr: Step-by-Step approach

Reload Readiness


framatome


Making History

PROtect

Enhanced accident tolerant fuel program milestones are taking fuel to the next level.

chromium-coated full-length rods in operation

PROtect solutions have been implemented in

different reactor

B&W, CE, KWU15, W17, and BWRs

2 in 4 in the U.S.

2016 Gösgen

st use in a

reactor

st use in a U.S. reactor

2019

Vogtle U2

2020

BWR Unit

commerical reload using **PROtect** chromiaenhanced fuel pellets

March 2021

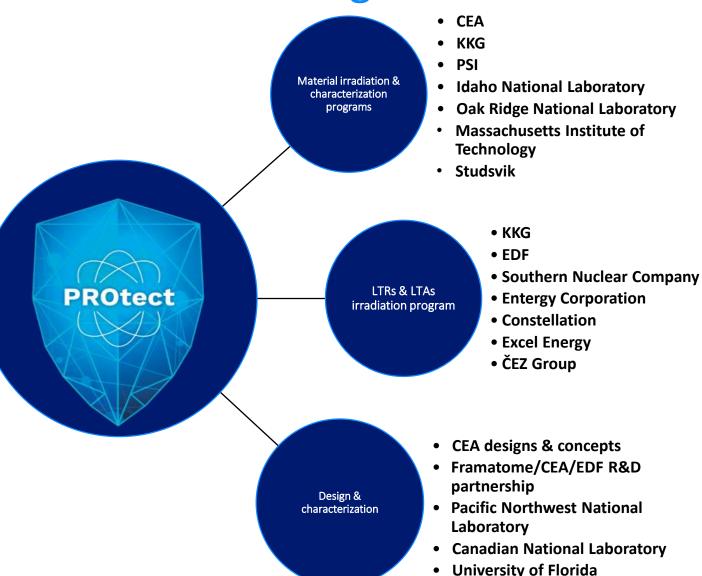
Calvert Cliffs

complete

assembly

PROtect fuel

in operation


June 2021 Gösgen

> complete lifecycle

Future technologies and expansion include: increased uranium enrichments and silicon carbide.

Acknowledgements

framatome

The authors would especially like to thank:

- Kernkraftwerk Gösgen-Däniken AG for their collaboration in the irradiation & characterization of E-ATF materials in the Gösgen reactor
- **CEA** for contributing to the development of the full-length tube coating process The I3P collaboration for contributing to the initial development of Cr-coated cladding

- This work is supported by:

 The U.S. Department of Energy under Award Number DE-NE0009034 (and previously DE-NE0008818 and DE-NE000822)
- The BPI France under the contract DOS0151318
 The Electric Power Research Institute (EPRI)

- The Safe and Alternative VVER European Fuel (SAVE) European project (Grant Agreement 10114771)

Part of the in-pile and out-of-pile characterizations of Cr-coated cladding is performed within the I3P collaboration (Framatome, CEA and EDF).

Any reproduction, alteration, transmission to any third party or publication in whole or in part of this document and/or its content is prohibited unless Framatome has provided its prior and written consent.

This document and any information it contains shall not be used for any other purpose than the one for which they were provided.

Legal and disciplinary actions may be taken against any infringer and/or any person breaching the aforementioned obligations.

M5, M5_{Framatome}, PROtect, and ATRIUM are trademarks or registered trademarks of Framatome or its affiliates, in the USA or other countries.

